December 2021

Trial of TRIAC therapy in boys age <30 months, with deficiency of the MCT8 thyroid hormone transporter due to SLC16A2 mutations.

Dear Colleague

Deficiency of the MCT8 thyroid hormone transporter (encoded by SLC16A2) causes severe intellectual and motor disability with raised T3 levels. In a previous international, multicentre trial, treatment with TRIAC (a thyroid hormone analogue) was shown to ameliorate peripheral thyrotoxicosis in older children & adults with MCT8 deficiency (Lancet Diabetes & Endocrinol 2019).

We now wish to invite patient participation in a further international, multicentre study investigating the effect of treatment with TRIAC on neurodevelopmental outcome in young boys (age less than 30 months) with MCT8 deficiency due to SLC16A2 mutations (IRAS:275579; ClinicalTrials.govNCT02396459). In the study, participants being treated with TRIAC for 96 weeks, will be assessed in the NIHR Clinical Research Facility in Cambridge, as outlined below.

We welcome enquiries from health professionals or families caring for patients fulfilling the eligibility criteria, via the contact details shown above.

Yours sincerely

V K K Chatterjee
Professor of Endocrinology

V K K Chatterjee
Professor of Endocrinology
Can TRIAC therapy alter neurodevelopmental outcome in children with MCT8 thyroid transporter deficiency; an international, multicentre trial (IRAS: 275579; ClinicalTrials.gov NCT02396459)

Key inclusion criteria
- Male
- Age less than 30 months
- SLC16A2 (MCT8) gene mutation

Chief Investigator
- Edward Visser (Erasmus Med Ctr, Rotterdam)
- UK Investigators
 - Krishna Chatterjee (Endocrinology)
 - Gautam Ambegaonkar (Paediatric neurology)
 - Carla Moran (Endocrinology)
 - Greta Lyons (Study coordinator)

Contact details
- Visser: w.e.visser@erasmusmc.nl
- UK Investigators
 - Chatterjee: kkc1@medschl.cam.ac.uk
 - Moran: carla.moran@ucd.ie
 - Lyons: (01223 762661; gl348@medschl.cam.ac.uk)