MRL Home

David Savage

Wellcome Trust Senior Clinical Fellow

Department of Clinical Biochemistry

Group members


Research Interests

Staff photo

Insulin resistance and type 2 diabetes are quintessential complexdiseases involving hormone action or resistance in several different target issues. Unravelling this complexity is impossible in cultured cells alone and unfortunately whilst many disorders can be reliably modelled in rodents, this is not always the case in insulin resistance where my own work has already highlighted some key interspecies differences (Embo Mol Med 2009). Many different approaches are therefore needed to tackle this complex metabolic problem.

Our work is currently focussed in three areas, all of which relate to lipodystrophy, a rare cluster of disorders, characterised by too little rather than too much fat (obesity). Remarkably, lipodystrophy is associated with all the features of the metabolic syndrome. We recently identified two novel subtypes of partial lipodystrophy caused by mutations in adipocyte lipid droplet proteins. The group is actively engaged in studies aimed at understanding the key cell biological roles of these lipid droplet proteins (see below).

Specific research programmes: 

1) The molecular basis of human lipodystrophies

Understanding the molecular basis of rare human inherited diseases has, over many decades, provided key insights into both the pathophysiology of disease and more fundamental understanding of cell biology and human physiology. We have access to a unique population of patients with extreme insulin resistance/lipodystrophy. Mutations detected in candidate gene studies are explored further for their role in human disease by linkage studies in pedigrees, functional studies of the properties of the mutant variant and detailed in vivo studies in humans. More recently, we have, in collaboration with colleagues based at the Wellcome Trust Sanger Institute, switched from a candidate based approach to the use of next generation whole exome sequencing in efforts to identify novel genetic causes of severe insulin resistance.


2) Lipid droplets (LDs)

LDs are unique organelles in being surrounded by a phospholipid monolayer and, presumably related to the unique biophysical properties of this monolayer and the underlying hydrophobic neutral lipid core, are targeted by a specific set of proteins. Our recent discoveries of genetic mutations in LD proteins have led us to explore the fundamental biology underpinning the targeting and subsequent requirement of CIDEC for the formation of a unilocular LD in white adipocytes and also to explore the way in which perilipin1 co-ordinates the sequential activity of triacylglycerol lipases. This work is leading us in entirely new and fascinating directions.


3) In vivo models

Ectopic fat accumulation is strongly linked to insulin resistance although mechanistic details remain incomplete. In order to understand the metabolic pathways responsible for ectopic fat accumulation, a prominent feature in all severe forms of lipodystrophy, we undertake a combination of detailed mouse and human physiological studies.

We are funded by the Wellcome Trust, MRC CORD, and  the Cambridge BRC.


Selected Publications

Robbins AL, Savage DB. (2015). The genetics of lipid storage and human lipodystrophies. Trends Mol Med, 2015 Jul;21(7):433-8. doi: 10.1016/j.molmed.2015.04.004. PMID: 25979754.


Zhou L, Park SY, Xu L, Xia X, Ye J, Su L, Jeong KH, Hur, JH, Oh H, Tamori Y, Zingaretti CM, Cini S, Argente J, Yu M, Wu L, Ju S, Guan F, Yang H, Choi CS, Savage DB, Li P. (2015). Insulin resistance and white adipose tissue inflammation and uncoupled in energetically challenged Fsp27-deficient mice. Nat Commun, 2015 Jan 7;6:5949. doi: 10.1038/ncomms6949. PMID: 25565658. PMCID: PMC4354252.


Payne F, Lim K, Girousse A, Brown RJ, Kory N, Robbins A, Zue Y, Sleigh A, Cochran E, Adams C, Dev Borman A, Russel-Jones D, Gorden P, Semple RK, Saudek V, O'Rahilly S, Walther TC, Barroso I, Savage DB. (2014). Proc Natl Acad Sci U S A, 2014 Jun 17;111(24):8901-6. doi: 10.1073/pnas.1408523111. Epub 2014 Jun 2. PMID: 24889630. PMCID: PMC4066527.


Gandotra S, Le Dour C, Bottomley W, Cervera P, Giral P, Reznik Y, Charpentier G, Auclair M, Delepine M, Barroso I, Semple RK, Lathrop M, Lascols O, Capeau J, O'Rahilly S, Magre J, Savage DB, Vigourous C. (2011). Perilipin deficiency and autosomal dominant partial lipodystrophy. N Engl J Med, 2011 Feb 24;364(8):740-8. doi: 10.1056/NEJMoa1007487. PMID: 21345103. PMCID: PMC3773916.


Semple RK, Sleigh A, Muratroyd PR, Adams CA, Bluck L, Jackson S, Vottero A, Kanabar D, Charlton-Menys V, Durrington P, Soos MA, Carpenter TA, Lomas DJ, Cochran EK, Gorden P, O'Rahilly S, Savage DB. (2009). Postreceptor insulin resistance contributes to human dyslipidemia and hepatic steatosis. J Clin Invest, 2009 Feb;119(2):315-22. doi: 10.1172/JCI37432. Epub 2009 Jan 26.