Research Interests
We aim to identify new molecules and pathways that play a role in the brain control of energy homeostasis, and thus reveal new potential therapeutic targets to tackle obesity.
The approaches we have taken include:
Mapping the human hypothalamic functional architecture underlying appetitive control using both single nucleus RNA sequencing (NucSeq) and single molecule fluorescent in situ hybridization (smFISH).
Genetic studies point to the brain, and in particular the hypothalamus, as having a crucial role in modulating appetitive behaviour, which has limited the mechanistic insights achievable from human research. The inaccessibility of the human hypothalamus has, to date, meant our understanding of circuitry controlling food intake has emerged primarily from murine studies. For example, arcuate proopiomelanocortin (POMC) and NPY/AgRP neurons are critical nodes in the control of body weight. Often characterised simply as direct targets for leptin, recent data suggest a more complex architecture. Using single cell RNA sequencing, we have generated an atlas of gene expression in murine POMC and NPY/AgRP neurons. These data reveal murine arcuate POMC neurons to be a highly heterogeneous population (Lam et al, Mol Met 2017). Now, a collaboration with the Cambridge Brain Bank, has provided us access to frozen human donor brain samples. In a BBSRC funded project grant we are transcriptionally profiling >500,000 human hypothalamic cells using NucSeq, as well as mapping the feeding circuitry onto human hypothalamic sections using smFISH. In addition, in a BBSRC CASE PhD studentship together with Novo Nordisk, we are characterising human neurons expressing the GLP1-R. Mechanistic studies on the brain will naturally, still require mouse models. However, comparing and contrasting the human and mouse architectures will allow us, and others in the field, to refine our approach and focus our efforts on only the relevant appetitive circuitry that exists in both species.
Molecularly characterizing, in human neurons, genes associated with severe obesity identified from consanguineous pedigrees. 10% of severe human obesity currently has a monogenic cause. Thus, much of the genetic aetiology of severe obesity remains unknown. In an MRC funded collaborative project grant with Philippe Froguel (Imperial/Lille), we are studying the disease in consanguineous pedigrees. Froguel has recruited a cohort of >400 severely obese children from consanguineous families in Pakistan, in which homozygous mutations in the leptin-melanocortin pathway, identified by whole exome sequencing, explain ~30% of cases. We are currently molecularly characterizing emerging candidate genes that emerge from the screen in human neurons and mapping their expression in the human hypothalamus. In addition, we plan to explore the functional consequences of mutations in these candidate genes in hypothalamic neurons derived from human stem cells.
Understanding the physiological role of known genetic modifiers influencing food intake and body-weight
The first and most robust of the genes identified by GWAS is FTO (fat mass and obesity related transcript) and we have taken a number of different approaches to studying its biology. We have contributed to characterizing its enzymatic function as a demethylase (Gerken et al, Science 2007; Ma et al, Biochem J 2012), as well as identifying and characterizing loss-of-function human mutations (Boissel et al, AJHG 2009; Meyre et al, Diabetes 2010). Whatever the explanation for the effects of intronic polymorphism on human adiposity, studies of humans and mice indicate that FTO itself is an important regulator of body size and composition. We have demonstrated a role for FTO in the cellular sensing of amino acids, linking levels to mTOR signalling (Cheung et al, IJO 2013; Gulati et al, PNAS 2013), and that FTO links high-fat feeding to leptin resistance through activation of hypothalamic NFкB-related signalling pathways (Tung et al, Mol Met 2016).
However, as FTO has demonstrated, the speed of translating these obesity GWAS genes into insightful biological knowledge has been disappointing for two reasons: (1) the vast majority of the identified obesity susceptibility variants are located in intronic or integenic regions, making the identification of the ‘causative’ gene difficult to establish; and (2) the investigation of the involvement of the ‘proposed’ genes have so far been addressed in more complex model organisms such as mice. There is therefore an unmet need for validation of this GWAS data. Drosophila melanogaster, a key model for research in developmental biology, cell biology and neurobiology, has recently been demonstrated to be an excellent model for dissecting metabolic homeostasis and nutrient sensing pathways.
Selected Publications
Steuernagel L, Lam BYH, Klemm P, Dowsett GKC, Bauder CA, Tadross JA, Hitschfeld TS, del Rio Martin A, Chen W, Solis AJ, Fenselau H, Davidsen P, Cimino I, Kohnke SN, Rimmington D, Coll AP, Beyer A, Yeo GSH, Brüning JC. HypoMap – a unified single cell gene expression atlas of the murine hypothalamus. Nature Metabolism. October 2022. Online ahead of print. doi.org/10.1038/s42255-022-00657-y.
Lam BYH, Williamson A, Finer S, Day F, Tadross JA, Gonçalves Soares A, Wade K, Sweeney P, Bedenbaugh MN, Porter DT, Melvin A, Ellacott KLJ, Lippert RN, Buller S, Rosmaninho-Salgado J, Dowsett GKC, Ridley KE, Xu Z, Cimino I, Rimmington D, Rainbow K, Duckett K, Holmqvist S, Khan A, Dai X, Bochukova EG, Genes & Health Research Team, Trembath RC, Martin HC, Coll AP, Rowitch DH, Wareham NJ, van Heel DA, Timpson N, Simerly RB, Ong KK, Cone, RD, Langenberg C†, Perry JRB†, Yeo GSH†, O’Rahilly S†. MC3R links nutritional state to childhood growth and the timing of puberty. Nature 2021 Nov 3. doi: 10.1038/s41586-021-04088-9. PMID: 34732894 († co-senior author)
Loos RJF and Yeo GSH. The genetics of obesity: from discovery to biology. Nat Rev Genet. 2021 Published online Sep 23 2021, doi.org/10.1038/s41576-021-00414-z PMID: 34556834
Dowsett GKC, Lam BYH, Tadross JA, Cimino I, Rimmington D, Coll AP, Polex-Wolf J, Knudsen LB, Pyke C, Yeo GSH. A survey of the mouse hindbrain in the fed and fasted state using single-nucleus RNA sequencing. Molecular Metabolism 2021 53:101240. doi: 10.1016/j.molmet.2021.101240. PMID: 33962048
Chalmers J, Tung YCL, Liu CH, O’Kane CJ, O’Rahilly S, Yeo GSH. A multi-component screen for feeding behaviour and nutritional status in Drosophila to interrogate mammalian appetite-related genes. Mol Metab. 2020 Nov 23:101127. doi: 10.1016/j.molmet.2020.101127. Online ahead of print. PMID: 33242659
Polex-Wolf J, Lam BYH, Larder R, Tadross J, Rimmington D, Bosch F, Cenzano VJ, Eduard Ayuso E, Ma MKL, Rainbow K, Coll AP, O’Rahilly S, Yeo GSH. Hypothalamic loss of Snord116 recapitulates the hyperphagia of Prader-Willi Syndrome. (2018) J. Clin. Invest. 128(3):960-969. doi: 10.1172/JCI97007. Epub 2018 Jan 29 PMID: 29376887
Lam BYH, Cimino I, Polex-Wolf J, Kohnke SN, Rimmington D, Iyemere V, Heeley N, Cossetti C, Schulte R, Saraiva LR, Logan DW, Blouet C, O’Rahilly S, Coll AP & Yeo GSH. Heterogeneity of hypothalamic Pro-opiomelanocortin-expressing neurons revealed by single-cell RNA sequencing. (2017) Molecular Metabolism 6(5):383-392. PMID: 28462073
Raffan E, Dennis RJ, O’Donovan CJ, Becker JM, Scott RA, Smith SP, Withers DJ, Wood CJ, Conci E, Clements DN, Summers KM, German AJ, Mellersh CS, Arendt ML, Iyemere VP, Withers E, Söder J, Wernersson S, Andersson G, Lindblad-Toh K, Yeo GSH†, O’Rahilly S†. A deletion in the canine POMC gene is associated with weight and appetite in obesity prone Labrador retriever dogs. 2016 Cell Metabolism 10;23(5):893-900. († co-seniorauthor). PMID: 27157046. PMCID: PMC4873617.
Tung YCL, Gulati P, Liu CH, Rimmington D, Dennis R, Ma M, Saudek V, O’Rahilly S, Coll AP, Yeo GSH. FTO is necessary for the induction of leptin resistance by high-fat feeding. Molecular Metabolism (2015) 4(4):287-98. PMID: 25830092. PMCID: PMC4354923.
Gulati P, Cheung MK, Antrobus R, Church C, Harding H, Tung TCL, Rimmington D, Ma M, Ron D, Lehner PJ, Ashcroft F, Cox RD, Coll AP, O’Rahilly S and Yeo GSH. (2013). A role for the obesity-related FTO gene in the cellular sensing of amino acids. Proc. Natl. Acad. Sci. U.S.A. www.pnas.org/cgi/doi/10.1073/pnas. 1222796110. PMID: 22614055.
Tung YCL, Ma M, Piper S, Coll AP, O´Rahilly S and Yeo GSH. (2008). Novel leptin-regulated genes revealed by transcriptional profiling of the hypothalamic paraventricular nucleus. J Neuroscience, 28(47):12419-26. PMID: 19020034. PMCID: PMC2650686.
Yeo GSH, Hung C.C, Rochford J, Keogh J.M, Gray J, Sivaramakrishnan S, O’Rahilly S and Farooqi I.S. (2004). A de novo mutation affecting human TrkB associated with severe obesity and developmental delay. Nature Neuroscience, 7(11):1187-9. PMID: 15494731.
Yeo GSH, Farooqi I.S, Aminian S, Halsall D.J, Stanhope R.G and O’Rahilly. (1998). A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nature Genetics, 20(2):111-2. PMID: 9771698.